Update data in Hadoop using Python

To update data in Hadoop using Python, you can use the PySpark library. Here’s a sample code to update data in Hadoop:

from pyspark.sql import SparkSession

# Create a SparkSession
spark = SparkSession.builder \
    .appName("HadoopDataUpdater") \
    .getOrCreate()

# Read the data from Hadoop
data = spark.read.format("csv").option("header", "true").load("hdfs://your_hadoop_path")

# Update the data
updated_data = data.withColumn("column1", "new_value") \
                   .where("condition_column = 'condition_value'")

# Write the updated data back to Hadoop
updated_data.write.format("csv").option("header", "true").mode("overwrite").save("hdfs://your_hadoop_path")

print("Data updated successfully!")

In the code above, replace "hdfs://your_hadoop_path" with the actual Hadoop file path where your data is stored. Also, replace "column1", "new_value", "condition_column", and "condition_value" with the actual column name, new value, condition column, and condition value for updating the data.

The code uses the PySpark library to create a SparkSession. It reads the data from Hadoop using the spark.read function, specifying the format (csv in this example) and the header option.

The data is then updated using the withColumn function to modify the desired column and the where function to filter the rows based on the condition.

Finally, the updated data is written back to Hadoop using the write function, specifying the format (csv in this example), the header option, the overwrite mode to replace the existing data, and the Hadoop file path.

Make sure you have PySpark installed. You can install it using pip:

pip install pyspark

Additionally, ensure you have the necessary permissions to read and write data to your Hadoop cluster.

Remember to handle any exceptions that may occur during the data reading, updating, or writing for proper error handling.

Pamai Tech
Turning ideas into Reality

Products

Office Add-in

Enterprise Solutions

Cloud Consulting

UI UX Design

Data Transformation

Services

FAQ's

Privacy Policy

Terms & Condition

Team

Contact Us

Company

About Us

Services

Features

Our Pricing

Latest News

© 2023 Pamai Tech